

Application Note

Use of non-Groovy scripts with Configuration

Management

Application Note

23rd April 2019

John Diamond

Page 2 | Application Note – Use of non-Groovy scripts with Configuration Management

Table of Contents

1 Overview .. 3

2 Managing the security sandbox ... 3

3 Executing non-Groovy scripts .. 4

Page 3 | Application Note – Use of non-Groovy scripts with Configuration Management

1 Overview

The Configuration Management facilities of Entuity leverage Groovy scripts to control the required interaction

with managed devices. The Groovy language is derived from Java and allows the execution of scripts without

explicit compilation by a user. A “Just in time” approach to compilation is incorporated that provides the

convenience of a scripted environment with the efficiency of a compiled language. Furthermore, given that

Groovy is derived from Java it can leverage Java libraries and can include Java syntax if that is the preference of

the script implementer. A set of such scripts is included with the product and installed by default. Suitably

authorized users can add their own scripts to control additional configuration management functions that they

can then add to the system. The scripts form the executable definitions for the “Steps” performed by

Configuration Management “Tasks”. The execution of these Groovy scripts is controlled by a functional module

called the “scriptEngine”. Any script executed by the scriptEngine is assumed to be written in Groovy.

This application note describes how to implement a simple Groovy script that launches another script that is

implemented in some other scripting language. The Windows Command Prompt will be used as an example

script processing engine as it is capable of executing batch files.

2 Managing the security sandbox

There is syntax within the Groovy language that allows external executables including alternative script

processors or shells to be executed. The use of external executables is dependent on suitable adjustments being

made to the security sandbox configuration in which the scriptEngine operates. The scope of this sandbox is

defined by the etc\scriptEngine.policy configuration file which, in Entuity 17.0, has the following default settings:

// This file contains permissions for the scriptEngine

grant codeBase "file:${ENTUITY_HOME}/-" {

 permission java.security.AllPermission;

};

// Permissions for config management groovy scripts.

// These have a code base of /com/entuity/configManager/script/<HOSTNAME>

// Where HOSTNAME is the originating server name as known to Entuity

grant codeBase "file:/com/entuity/configManager/script/-" {

 permission java.util.PropertyPermission "ENTUITY_HOME", "read";

 permission java.io.FilePermission "${ENTUITY_HOME}/configManagement/-", "read, write, delete";

 permission java.io.FilePermission "${ENTUITY_HOME}/cm_transfer/-", "read, write, delete";

 permission java.io.FilePermission "${ENTUITY_HOME}/cm_archive/-", "read, write, delete";

 permission java.io.FilePermission "${ENTUITY_HOME}/log/expect.log", "read, write, delete";

 permission java.io.FilePermission "${ENTUITY_HOME}/log/expect.log.1", "read, write, delete";

 permission java.io.FilePermission "${ENTUITY_HOME}/log/expect.log.2", "read, write, delete";

 permission java.io.FilePermission "${ENTUITY_HOME}/log/expect.log.3", "read, write, delete";

 permission java.io.FilePermission "${ENTUITY_HOME}/log/expect.log.4", "read, write, delete";

};

Each permission statement within the grant section for "file:/com/entuity/configManager/script/-" defines a
directory or file that the scriptEngine is allowed some level of access to. Any directory or file not mentioned is, by
implication, outside the accessible reach of the scriptEngine. Each entry can have any combination of “read”,
“write”, “delete” or “execute” permission granted. Adding the following line to the same grant block enables the
scriptEngine to launch the Windows Command Prompt so that batch files can be executed:

Page 4 | Application Note – Use of non-Groovy scripts with Configuration Management

 permission java.io.FilePermission "C:/Windows/System32/cmd.exe", "execute";

Note that the file separator used is “/” regardless of whether this is a Windows or Linux installation.

If changes are made to scriptEngine.policy while the Entuity server is running, they will have no effect until the

scriptEngine is restarted. A restart of the scriptEngine happens when the server is restarted but can be

performed in isolation, without the need for a complete system restart, from the command line using “bin\stop

scriptEngine”.

3 Executing non-Groovy scripts

An example of how the above configuration change can be exploited would be to run the “snmpdump.exe”

utility from a Configuration Management Task. A batch file called “test.bat” was placed in “C:\Temp” (a more

suitable directory would be recommended for a production deployment). The contents were as follows:

C:\Entuity16.5\lib\tools\snmpdump -v2c -c %3 %2 >C:\Temp\%1.txt

Note that the full path of the snmpdump executable was specified and an output file redirection was included.

Additionally, three command line parameters were passed containing the device name (%1), polled IP address

(%2) and read-only community string (%3).

The batch file was called from a Configuration Management Step script that looked like this:

String command = "C:\\Windows\\System32\\cmd.exe /c C:\\Temp\\test.bat " + target.name + " " + target.devPolledIpAddr +

" " + target.snmpCommunity

command.execute()

Page 5 | Application Note – Use of non-Groovy scripts with Configuration Management

The “SNMP dump” Step was invoked by a Task called “SNMP dump”:

Page 6 | Application Note – Use of non-Groovy scripts with Configuration Management

Note the syntax used in the Step script to obtain the device name, polled IP address and read-only community

string from the corresponding StormWorks data structure for the selected device. Also note that the command

string defined in the Groovy script which is then executed by command.execute() did not contain any file redirection

syntax as this is only supported by the Command Tool and any batch file that it then executes. The above

configuration allows an authorized Entuity user to request an SNMP walk of the entire MIB to be performed and

written to a file in “C:\Temp” named with the device name.

